Required logistical resources to support the development of a sustainable corn stover bioeconomy in the USA

Mahmood Ebadian^{b,c}, Shahab Sokhansanj^{a,b}, Erin Webb^a

and Bioenergy Research Group, UBC

ental Sciences Division, Oak Nidge National Laborat

OAK RIDGE

- Energy security
- GHG reduction and decarbonization of industrial activities
- Increased economic activities and jobs in rural areas and remote communities

U.S. Billion Ton Studies- 2005, 2011 and 2016

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply

U.S. BILLI IN N-TON UPDATE Biomass Supply for a Bioenergy and Bioproducts Industry

August 2011

2016 BILLION-TON REPORT

Advancing Domestic Resources for a Thriving Bioeconomy

Volume I | July 2016

Corn stover availability in the USA (dry tons)

Source: Hilliard, 2016-ORNL

Corn stover availability in the USA (dry tons)

- ~110 million dry tons of corn stover can be harvested from 37 states in a sustainable manner.
- **17 major corn growing states** where commercial amounts of corn stover are produced, are considered for the logistical resource assessment.
- Total annual production of corn stover in the selected states is ~108 million dry tons, over 98% of the total production of corn stover

Biorefinery Profile

General profile of a commercial-scale cellulosic ethanol plant modeled in IBSAL-MC					
Annual ethanol production capacity	25 million gallons				
Conversion yield	79 gallons/dry ton				
Annual corn stover demand	315,000 dry tons				
Operating days in a year	330 days				
Daily corn stover demand	950 dry tons				
Average harvestable yield	2 dry tons/ac				
Supply radius	30 miles				
Farm participation rate (ratio of contracted corn acres to the total corn acres in the supply radius)	23%				
Ratio of total corn acres to total crop acres in the supply radius	45%				
Average length of the harvest season	75 days				
Average number of days suitable for fieldwork within the harvest season	55 days (5 days per week)				
Working hours in a day	10 hours				
Percentage of the total time to mobilize logistics equipment between corn fields (unproductive time)	20%				
Maximum time that collected bales can be temporarily stored at the	2 months				
roadside of corn fields					

Sources: DuPont, 2014; Shah, 2013; Gutesa, 2013; Humbird et al., 2011; Hilliard, 2016; USDA, 2010.

Potential number of cellulosic ethanol plants

Potential number of cellulosic ethanol plants

- Total potential production of ethanol in these states is estimated to be 6.8 billion gallons per year
- Total number of ethanol plants is estimated to be 272.

Logistical resources- corn stover

Corn stover chopper/shredder

Baler

Tractor (180-220hp)

Truck and trailer

Bale collector /stacker

Storage

Loader

Sources: Stinger Inc., 2016; Morris-industries, 2014; Shah, 2013; Gutesa, 2013.

Snapshot of the IBSAL model for logistics resource assessment

Number of logistics equipment

Number of logistics equipment

60K

55K

50K

45K

15K

10K

5K

0K

56,166	Logistics equipment	Number of equipmen	It		Numbe Numbe	r of 53' fl r of semi
	Stover chopper	44,858			Numbe Numbe Numbe Numbe	r of load r of tract r of bale r of bale
	Baler	36,702			Numbe	r of corn:
	Bale collector/stacker	37,517				
	Tractors (185-220hp)	66,878				
	Telescopic loader	12,233				
	Semi-trailer truck	20,390				
	53ft flatbed trailer	20,390	98			
	Total	238,968		3,256	2,442	2,442
Iowa	Nebraska Illinois South Minnesota Onio Dakota	indiana Kansas iviichigan Wisconsin	North Dakota	Colorado	lexas	Wissouri

1,628

North

Carolina

1,628

Kentucky Virginia

814

Economic values of the logistics equipment (million US\$)

Economic values of the logistics equipment (million US\$)

7,384 Logistics equipment Economic value (M US\$) 1,570.0 Stover chopper Baler 5,138.3 Bale collector 5,346.2 Tractors (185-220hp) 13,357.6 **Telescopic loader** 856.3 Semi-trailer truck 2,752.7 53ft flatbed trailer 1,223.4 749 428 Total 30,244.5 lowa North Colorado Texas Dakota Dakota

321

321

Missouri

214

North

Carolina

214

Kentucky

107

Virginia

8K

7K

6K

5K-

4K

3K

2K

1K

OK

Number of logistics operators

Number of contracted corn growers

438

Number of contracted corn growers

• In total, the cellulosic ethanol plants would require to contract with 88,889 corn growers managing over 53.3 million acres of corn land in the states under study.

Net income of corn growers (million \$US)

10.5

Net income of corn growers (million \$US)

 The contracted corn stover suppliers would earn a net income of \$2.1 billion each year by selling their corn stover to the biorefineries

Storage configuration

Intermediate storage configuration for a 25 MGY cellulosic ethanol plant				
Maximum inventory level at each intermediate storage site	30,000 dry tons			
Maximum number of stored bales	66,244			
Average bale density	10.4 lb/ft ³			
Bale size	3×4×8 ft			
Stack configuration	6 high, 6 wide and 60 long			
Number of bales in each stack	2,160			
Number of stacks in each storage site	31			
Clearance between two adjacent stacks in a row (ft)	48			
Clearance between two adjacent stacks in a column (ft)	72			
Size of each intermediate storage (ac)	18.56			
Total land requirement (ac)- seven storage sites	129.92			

Sources: Martinez-Kawas, 2013; Shah, 2013;

Land requirement (ac) to store bales after harvest season

Land requirement (ac) to store bales after harvest season

- Total land requirement to store bales after harvest season: 35,320 acres
- Total stover inventory in post harvest season in intermediate storage sites: 53.1 million dry tons
- Number of intermediate storage sites: 1,903
- The estimated value of the storage land: \$8.8 million

Exiting agricultural equipment fleet in the USA

Sources: USDA, 2014.

Exiting agricultural equipment fleet in the USA

Equipment Type	
100+hp tractor	1.1 million units, 0.2 million units manufactured in the period of 2008-2012 and the rest prior to 2008.
Hay baler (small round and square balers)	over 0.7 million units. About 0.08 million units manufactured in the period of 2008-2012 and the rest prior to 2008.
Large square balers	1,600 units
truck fleet	3.3 million units. Over 0.5 units manufactured in the period of 2008-2012 and the rest prior to 2008.

Conclusions

- The obtained results demonstrate the economic and social significance of the corn stover bioeconomy in rural areas in the USA
- There is a profound potential for logistics equipment manufacturers to create jobs and wealth by increasing their production capacity
- The magnitude of the required logistics resources could be a limiting factor in short and mid-term for the sustainable development of the bioeconomy in the USA
- The existing fleet of field equipment can meet a portion of the equipment demand created by the biorefineries and their suppliers. The use of the existing equipment fleet depends on their age, efficiency, and availability in the supply region, the introduction of new technology or major changes in the equipment design and the supply chain models of the biorefineries and their suppliers (e.g. ownership, leased or rental).

Energy Efficiency & Renewable Energy

The Bioenergy Technology Office of the US Department of the Energy's Energy Efficiency and Renewable Energy supported and funded this study.

Contacts:

Dr. Mahmood Ebadian: Mahmood.Ebadian@biomassupplychain.com

Dr. Erin Webb: webbeg@ornl.gov

Dr. Shahab Sokhansanj: shahab.sokhansanj@ubc.ca