

Alberta Woody Biomass Syngas to Renewable Natural Gas/Combined Heat and Power (RNG/CHP) for Oil Sands

Summary presentation of report commissioned by NRCan (Proposal 500018271)

Sept. 2016 Scott Stanners Craig Louie Chris Norman

Agenda

SysEne Company Background

Alberta Context

NRCan Project

Objective 1 – Woody Biomass to RNG

Objective 2 – Woody Biomass for CHP in the Oil Sands

Alternatives

Conclusions

Company Background

Engineering and Management Consulting for Energy, Transportation, Resource, and High Tech

Systems Approach to Technology, Process, and People

Projects in the Bioenergy Sector

FortisBC Glenmore Landfill to RNG

Microsoft Data Center Wyoming Landfill to Fuel Cell

Community Fuels Biodiesel Plant (Calif.)

Chip, Pellet and Dust Handling System Upgrades

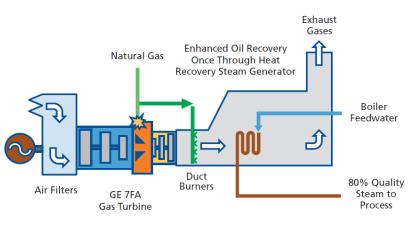
Alberta Context

Natural Resources Ressources naturelles Canada Canada

Strategic interest

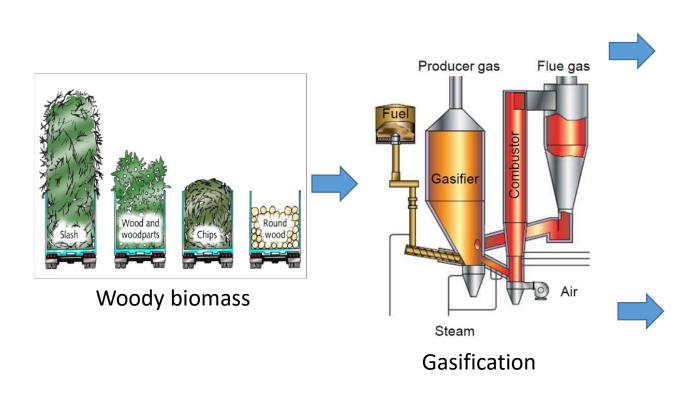
Oil Sands SAGD requirements

Suncor Fort McKay


- 12 MW electricity
- 345 MW steam

Conventional CHP pathway at SAGD site

- Fort MacKay
 - 172 MWe Natural Gas Gas Turbine with Steam Bottoming Cycle
 - 77% of steam in 2013
 - Excess electricity sold to grid
 - Operating since 2004



SysEne

MacKay River Plant Schematic

SysEne NRCan Study - Evaluation of 2 Pathways

Renewable Natural Gas

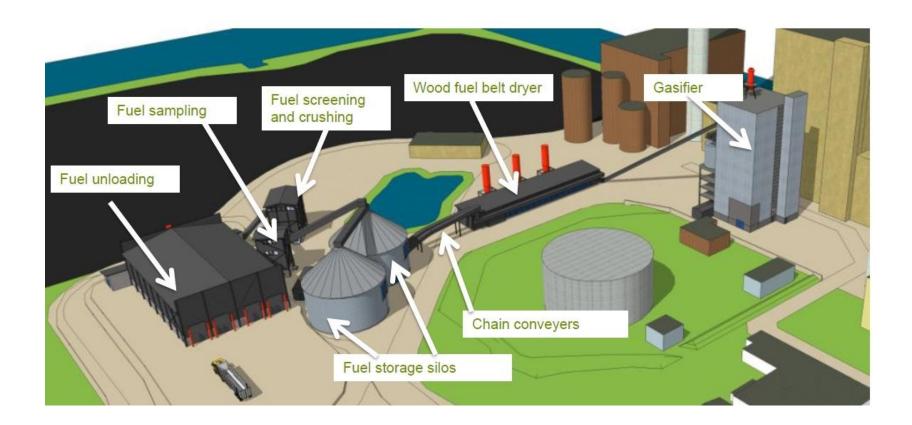
Combined Heat and Power

RNG Cost with Current Technology

RNG Cost Summary	Biomass	Conversion to pipeline quality RNG		Delivery	Other/ Co-	RNG to	
						products	pipeline
Biomass / Case	Biomass cost	Digestion/	Upgading and	Yield, % of	Pipeline	Other and credits	\$/GJ
	\$/tonne	Gasification \$/GJ	cleanup \$/GJ	energy	injection \$/GJ		
		input	input	input	delivered		
Landfill gas	Waste already	LFG collection	Biogas Upgrading	80-85%	Compressors,	Credits for	\$6-\$20
	collected.	\$0.60 to \$1.50	and clean up (\$1		connection,	tipping fees,	
	Some waste		to \$25). Costs		monitoring	carbon credits for	
Livestock manure	may require	Anaerobic	dependent on	35-45%	equipment and	avoided	\$10-\$20
Digestible waste	sorting and	digester \$2-\$25	scale and input		pipeline costs.	emissions, value	\$6-\$20
Wastewater sludge	cleaning		gas quality		Depends on	of co-products	\$6-\$20
Municipal solid waste, non		Thermochemica	l conversion (e.g.	50-70%	scale and	such as	\$12-\$30
recycled plastics, and solid		gasification and methanation with			distance to	digestate, non	
recovered fuel (MSW, NRP,		clean up (\$12-\$35/GJ) depends on		pipeline.	RNG outputs		
SRF)		scale and fuel difficulty		\$1 -\$30	such as heat for		
Woody Biomass	\$30-\$200					district heating	\$23-39
	including						
	collection costs						

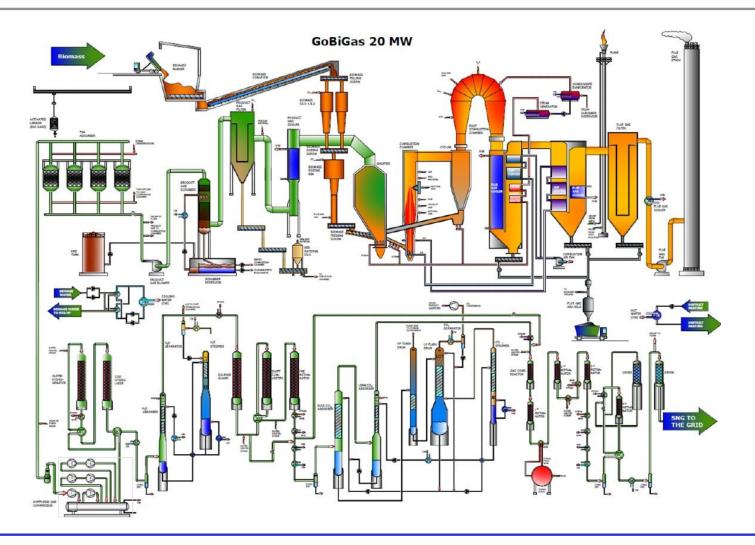
Natural Gas Wholesale Alberta ~ \$2/GJ

Woody biomass characteristics vary and are difficult to convert


Worldwide woody biomass RNG plants

Location/Technology	Usage type	Fuel/Product (MW/MW)	Start-up	Status
Guessing, Austria,	Gas engine;	8 _{fuel} / 2 _{el}	2002	Operational
FICFB	bio-RNG demo	1 MW _{RNG}	2009	Demo over
GoBiGas, Sweden FICFB	Bio-RNG	$32_{fuel} / 20_{RNG}$	2013	Commissioning, project stop?
Alkmaar, Netherlands MILENA	Bio-RNG	$4_{fuel}/2.8_{RNG}$	2017?	Planned
Petten, Netherlands MILENA	Bio-RNG R&D	0.8 _{fuel}	2008	Pilot plant, Operational
Gothenburg, Sweden FICFB	Bio-RNG R&D	2 _{syngas}	2009	Pilot plant, Operational
Koping, Sweden WoodRoll	Bio-RNG R&D	0.5 _{fuel}	2015	Pilot plant, Operational

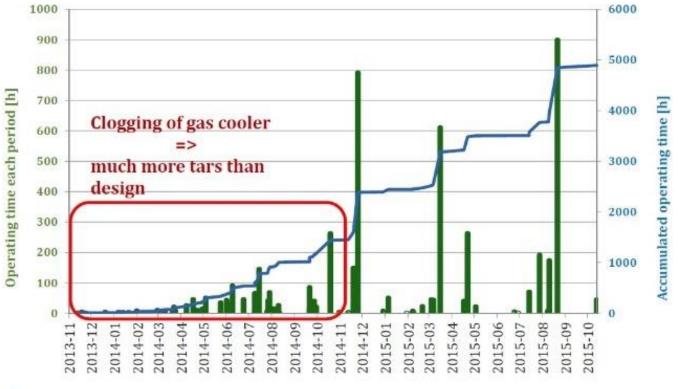
- FICFB = Fast Internally Circulating Fluidized Bed
- MILENA = ECN brand name for their indirect gasifier technology
- WoodRoll = Cortus Energy brand name for their biomass-to-syngas technology



Fuel feeding system

SysEne

Current technology is complex with many reactors



Technology maturity is still low

Gasification Sept 30 2015: 5000 hrs (wood pellets)

Well-funded, large scale (20 MW) demo projects have often experienced many problems and low availability.

Göteborg Energi

IEA Bioenergy 27/10/2015 Ingemar Gunnarsson

There are many technology challenges

Tar removal: the most important step

Deactivation of catalyst

Fouling of equipment

Plugging an intercooler

Naphthalene crystals

The "Achilles Heel" of biomass gasification

GoBiGas cost breakdown (\$USD)

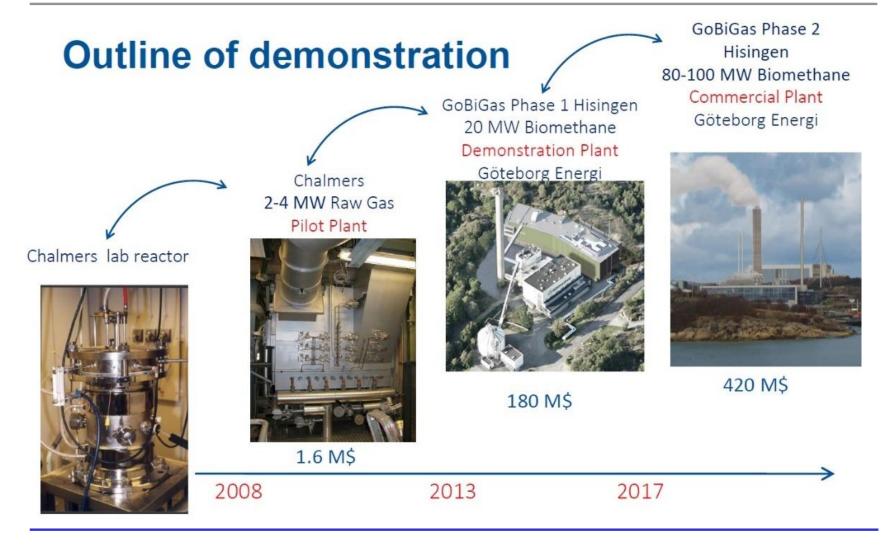
Gasifier

- Fuel feeding 9 M\$
- Gasifier 12 M\$
- Product gas cooler/filter and Scrubber 5 M\$
- Flue gas cleaning including flare 9 M\$

tcbiomass2015 THE INTERNATIONAL CONFERENCE ON THERMOCHEMICAL CONVERSION SCIENCE

 Total 35 M\$

- Syngas Cleaning and Methanization
- Carbon beds 15 M\$
- Hydronisation/sulfur removal 8 M\$
- CO2 separation 8 M\$
- Shift and premethanization 11 M\$
- Methanization 4 stages + drying 15 M\$
- Total 57 M\$


- Compressor 15 M\$
- Total 15 M\$

Building and civil constructions

- Base 17 M\$
- Explosion wall 6 M\$
- Total 23 M\$
 - Aux Systems 10 M\$ Commissioning 40 M\$ **Total** 180 M\$ 8.3 SEK = 1 \$

Pilot and prefeasibility example

Bio-RNG Pipeline interconnect costs

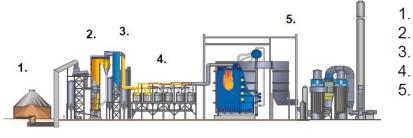
Site	Size (RNG output)	Plant Cost	Interconnect Costs \$CAD
Seabreeze, Delta, BC	1.5 MW	Not published	\$1.2 million
			(\$800/kW)
Lachenaie, Montreal,	104 MW	\$44 million	\$2.3 million
Que.		(\$423/kW)	(\$22/kW)

SysEne Preferred options for Alberta conditions

Established large suppliers

Valmet

- Full scale 10-200 MW
- Capable company
- Successful projects


New Technology companies

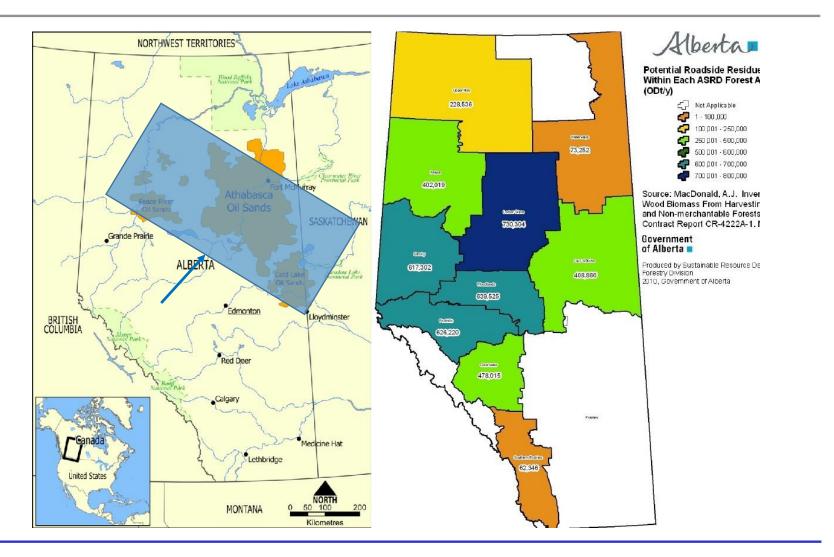
Some of the running MILENA/OLGA

ECN

- Promising technology
- High efficiency
- Reasonable momentum

© Valmet | DRAFT

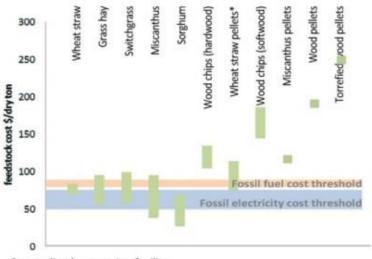
- 1. Fuel handling
- 2. Gasifier
- 3. Gas cooling
- 4. Gas filter
- Gas boiler and flue gas cleaning



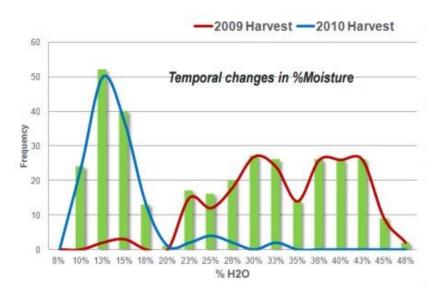
Cortus Energy

- Promising technology
- Modular plant design
- Reasonable momentum

SysEne Mapping Alberta Biomass to Oil Sands



Supply challenges


Key challenges in feedstock supply

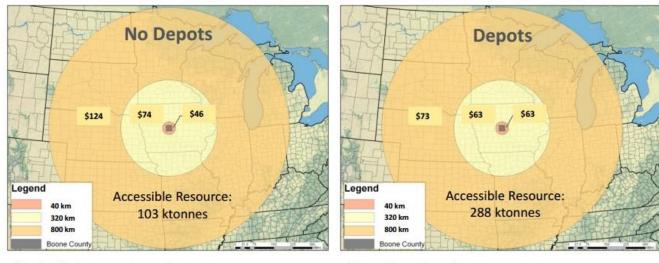
Supply Costs & Quantity

Variability (Quality)

*centralized processing facility

Wood chip costs

Unsubsidized		
Operation	Cost per green ton, \$USD	
Harvesting	\$81	
Chipping	\$18	
Transportation	\$15	
Total	\$114	


\$114/ton = \$20/GJ RNG for fuel

Subsidized		
Operation	Cost per green ton, \$USD	
Harvesting	\$0	
Chipping	\$18	
Transportation	\$15	
Total	\$33	

Example: depot strategy

Overall supply chain benefits

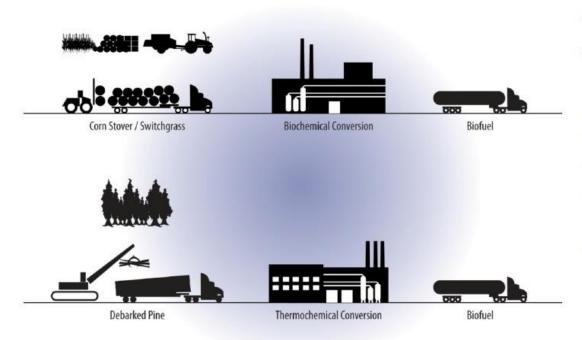
Example: Boone County, Iowa

Vertically integrated supply system

- Lower average feedstock supply costs BUT elevated risk
 - Quantity risk
 - Quality risk
 - Cost risk

Depot based supply system

- Higher average supply costs but
 - Stable quantities
 - Stable quality specs
- Reduces business risks → reduces WACC
- Enables economies of scale
- Conversion efficiency improvements
- Reduced equipment at the biorefinery


Source: INL 2015

IEA Bioenergy

Current supply chain

Today: vertically-integrated

Vertically integrated supply systems

IEA Bioenergy

Designed around:

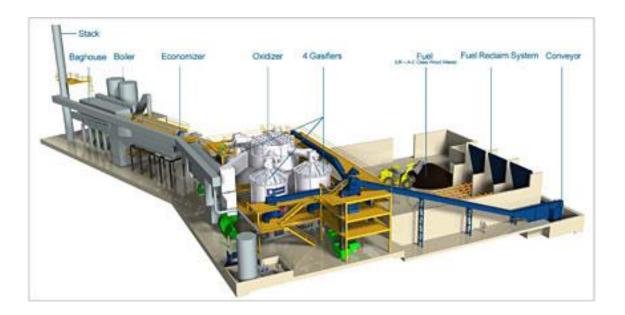
- Limited markets
- Specific feedstock
- Specific conversion facilities
- Specific supply radius
- High risk
- High costs
- Uncertain future
- Difficult to make high capital plant investment decisions

A preferred future

Future: Commodity supply system

Round Wood and Woody Energy Crops Woody Residues Supply Buffer ariation Municipal Solid Wastes **Multiple Biorefineries** Variation Shipping Terminal Elevator Rail, Truck, or Barge Supply ~~~~ Depot Buffer Variation Variation Supply Buffer Conversion (Biochemical or Variation Thermochemical) 1.000000 Wet Herbaceous Residues and Energy Crops Dry Herbaceous Residues and Energy Crops

IEA Bioenergy


High-density, stable, commodity feedstocks

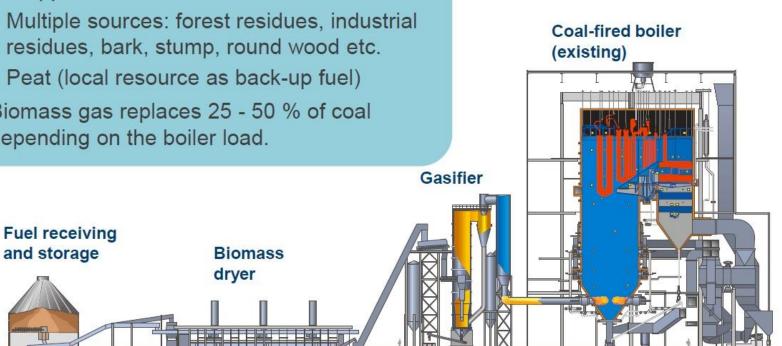
- Manage feedstock variability & uncertainty
- Reduce supply chain risk
- Blend resources to meet cost, quantity, quality specifications of endmarkets
- Access low-grade and diffuse resources

Source: INL 2015

Nexterra business case in UK

- 10 MWe
- \$100 million
- "Free" wood

- Renewable Obligation Certificates
- 25 cents/kWh


SysEne

Biomass co-firing: partial gasifier (140 MW), partial coal (560 MW)

Biomass feed 140 MW

- Chipped or crushed wood biomass
- Multiple sources: forest residues, industrial residues, bark, stump, round wood etc.
- Peat (local resource as back-up fuel)

Biomass gas replaces 25 - 50 % of coal depending on the boiler load.

SysEne Case study: Lachenaie Landfill, Montreal

Progressive Wastes

104 MW RNG Landfill to pipeline injection

Commissioned 2015

Project cost \$44 million

\$6/GJ RNG production cost

-SysEne

Alternate pathway biomass combustion to heat

Valmet CYMIC Boiler

Conclusions

- 1. Biomass combustion to heat (steam)
- 2. Biomass co-firing (but coal)
- 3. Waste-to-RNG
- 4. Supply chain modernization
- 5. Government strategy/policy adjustments

Contact Us

Chris Norman <u>chrisnorman@sysene.com</u>

Craig Louie <u>craiglouie@sysene.com</u>

Scott Stanners: <u>scottstanners@sysene.com</u>