
2016 BioCleantech Forum TURBODEN ORC TECHNOLOGY: STATE-OF-THE-ART

BIOCLEANTECH

Ilaria Peretti

Manager, Sales and Business Development North America

Ottawa, November 3rd, 2016

 $\hfill\square$ Who is Turboden and What We Do

□ Centralized vs Distributed District Energy

Cogeneration District Heating (Dalhousie University)

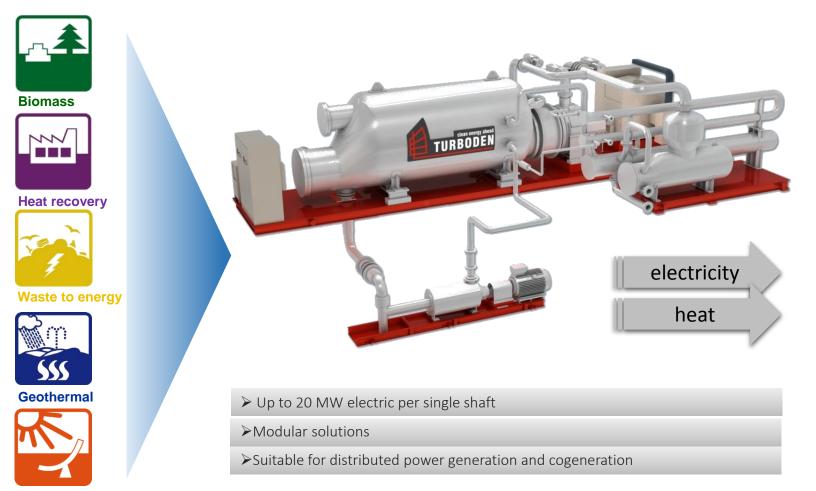
□ ORC Island Mode for Remote Communites

□ Steam & Power ORC (new product)

- TURBODEN IS A LEADING COMPANY IN THE DEVELOPMENT AND PRODUCTION OF ORC TURBOGENERATORS
- FOUNDED IN 1980
- > PART OF MITSUBISHI HEAVY INDUSTRIES (MHI) SINCE 2013

- > TODAY MORE THAN **330 PLANTS** IN **34 COUNTRIES**
- > 500 MW INSTALLED AND 8 MILLION OPERATING HOURS

ORC Turbogenerators are Simple, Flexible and Reliable



- ➢ WORK AT LOW TEMPERATURES (90+°C)
- LOW O&M*
- SIMPLE
- ➢ NO NEED OF WATER
- HIGH FLEXIBILITY AND GOOD EFFICIENCY AT OFF DESIGN CONDITIONS
- ➢ AUTOMATIC AND CONTINUOUS OPERATION **
- ➢ RELIABILITY

- * Few personnel required and no water treatment needed
- * Simple start-stop procedures

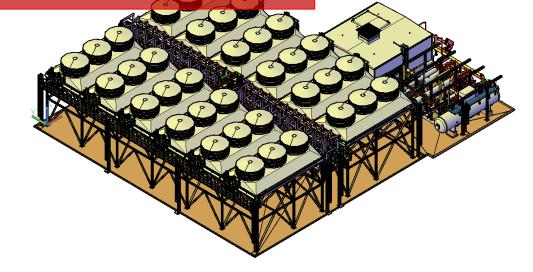
Solar and others..

		and the second se					
Application	Size	In Ope	eration	Under Co	nstruction	То	tal
	MW	Units	MW	Units	MW	Units	MW
Wood Biomass	0.2 - 8.0	238	281	45**	87	283	368
Geothermal Energy	0.5 – 16.5	8	29	2	20	10	49
Solar Thermal Energy	0.1 - 2.0	1*	2	4**	6	5	8
Heat Recovery	0.5 – 5.0	20*	35	7	22	27	57
Waste to Energy	0.5 - 5.3	9	20	0	0	9	20
Total Turboden Units		275	367	57	135	334	502

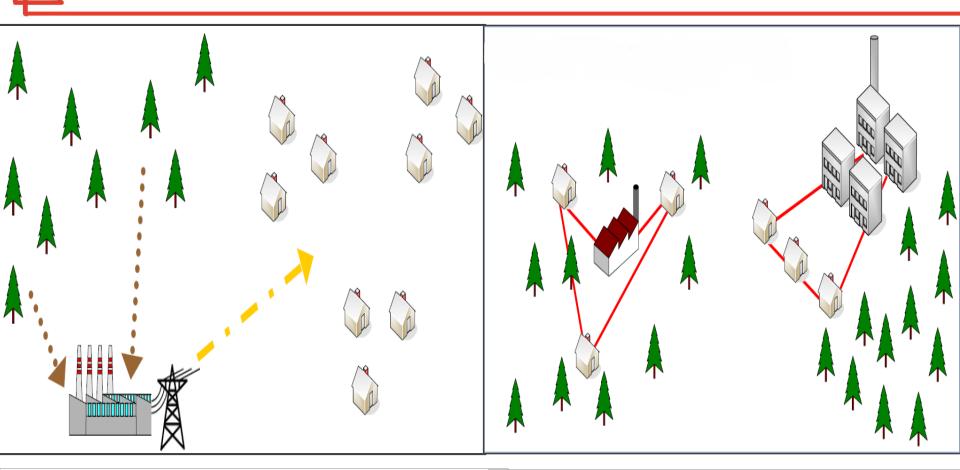
* Hybrid plants for heat recovery and the production of solar thermal energy ** Hybrid plants for biomass and solar energy

	Country	Total plants	Country	Total plants
San fi	Italy	94	Asia	11
	Germany	82	Africa	1
	Other Western European Countries	92	Americas	9
	Eastern European Countries	44	Oceania	1

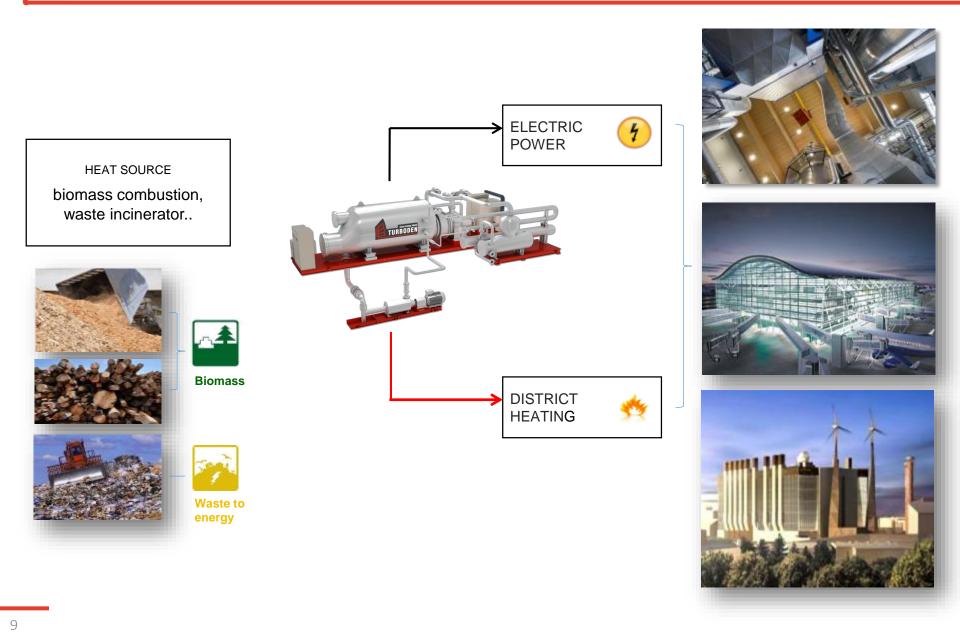
Date: August 2016



No Cooling Water Needed, No Icing



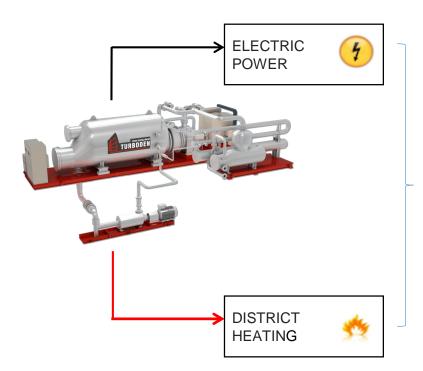
OVER 10 PLANTS ALREADY IN OPERATION NO COOLING CIRCUIT NEEDED NO WATER CONSUMPTION NO ISSUE FOR ICING



Biomass Energy: Centralized vs Distributed Electric Power

Centralized	Distributed
	 High Total Energy Efficiency (CHP) Higher Specific Investment Cost Low Biomass Transport Cost & Transmission Losses

ORC for Cogeneration and District Heating



District Heating Example (grid connected)

Dalhousie University

- Site: Halifax, Nova Scotia, Canada
- ORC Unit: Turboden 10 CHP
- Electric power: 1 MW
- Commissioning Date: Expected Nov 2017

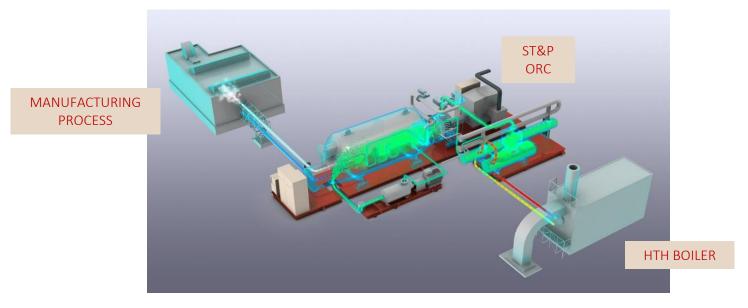
DALHOUSIE UNIVERSITY

Project description

First ORC Combined Heat and Power application for a University Campus. ORC recovers Heat from a Biomass Thermal oil Boiler fed by Wood residuals and supplies both Electricity and Hot water for District Heating application.

ORC Island Mode for Remote Communities

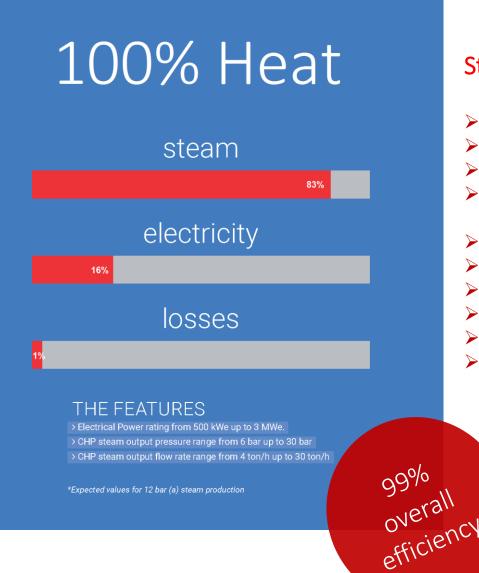
- Grid Code Analysis Requirement.
- Electrical stability study.
- Synchronous Electric Generator.
- ORC Start-Up (Black Start):
 - GENSETs are necessary to supply all the ancillaries
 - of the ORC
 - of the Heat Source (Biomass Boiler, Thermal oil pumps)
 - of the Heat Dissipation System (Cooling towers or Air Condenser)
 - It is necessary to synchronize GENSETs with the ORC after the ORC start-up
- ORC Start-Up (with presently installed generators):
 - Manage the overall Load Sharing with the Local Grid (a Droop strategy is Required)



FUEL

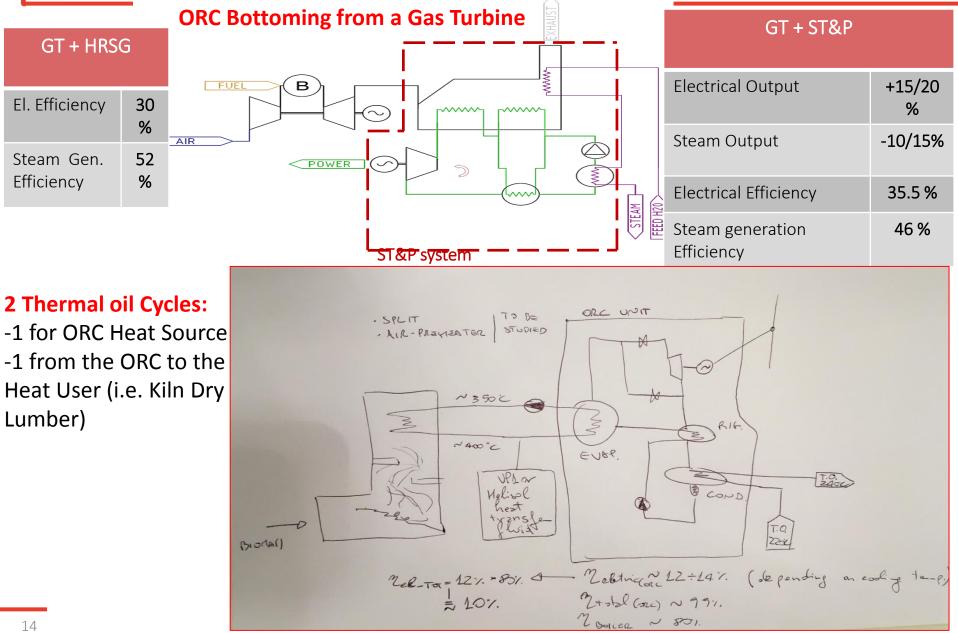
POWER

STEAM


ST&P ORC technology can be applied for CHP, using a **Fuel (conventional or renewable)** to generate Electricity and Steam, directly exploitable in Manufacturing Processes.

ST&P Turnkey Solutions

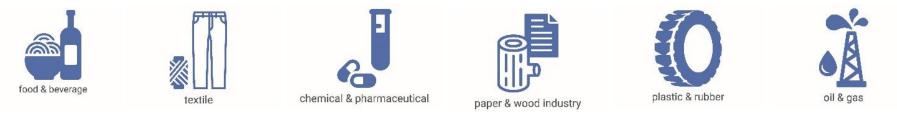
Turboden proposes ST&P ORC system as a **turnkey CHP** system, together with Bono Sistemi, an Italian company, leader in the design and manufacturing of High Temperature thermal oil boiler.


*Expected values for 12 bar (a) steam production

Steam & Power ORC Advantages

- High total Efficiency (99%).
- Focusing on Steam Output.
- High Availability.
- High Flexibility to Partial Load Operation down to 20%.
- Low O&M Cost.
- Fuel Flexibility.
- Modularity.
- Outdoor installation.
- Island Operation.
- Combined with other CHP technologies, if required

Steam & Power ORC (3/4): Configurations



At Your Service

Steam & Power ORC system was conceived to satisfy energy requirements of many manufacturing processes requiring **Electricity** and relevant amount of **medium Pressure Steam**.

(or alternative high temperature heat carrier like thermal oil or pressurized water)

More Energy No Losses

Effective CHP systems satisfy directly the Thermal requirement of the **manufacturing process**. ST&P ORC does it, producing thermal energy in the form of **steam** and **minimizing losses**.

Just Steam & Power

ST&P ORC produces Electricity & Steam without hot water to be exploited.

a group company of 🙏 MITSUBISHI HEAVY INDUSTRIES, LTD.

Ilaria Peretti

Manager, Sales and Business Development North America

ilaria.peretti@turboden.it

Cell: 860 881 0281