
Bioenergy Optimization Program Demonstration Project Presentation BIOCLEANTECH Forum In Ottawa ON Grid Stability, Remote Communities, and Air Quality Biopower Session on November 3, 2016

Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer

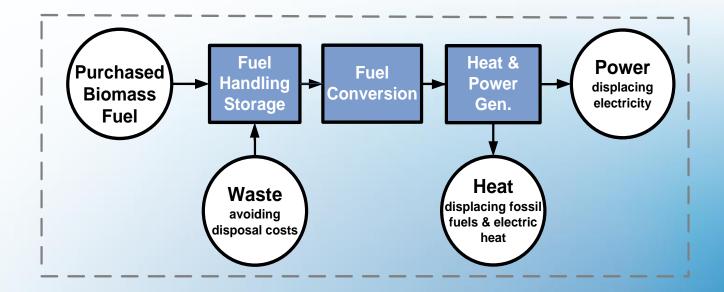
Biosystems Engineering Section

 Develop and deliver bioenergy initiatives to customer end use applications as a Utility demand side management measure.

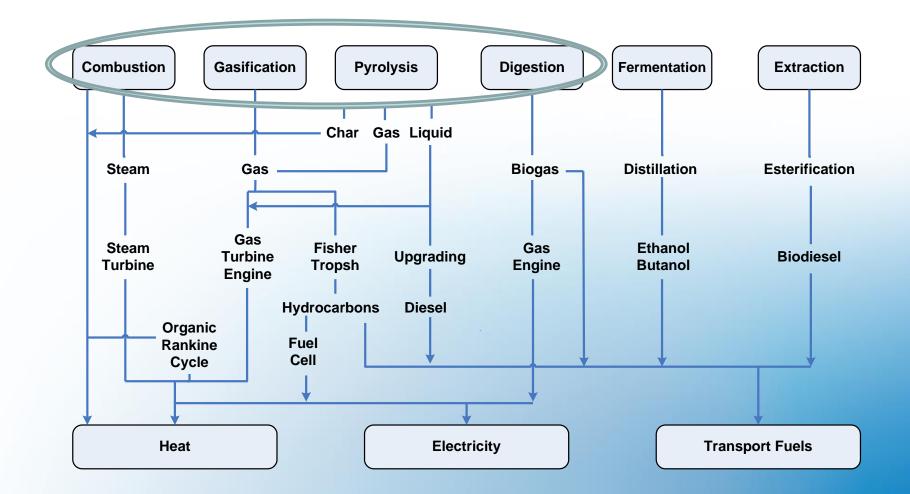
Biomass Related Activities At Manitoba Hydro

- Education, Awareness & Training
- Technology Monitoring & Review
- Research & Development Initiatives
- Industry Networking
- Capacity Building

2002


2016

- Technical & Economic Assessments
- Demonstration Projects
- Power Smart Programs



Power Smart Program Concept; Customer View

Conversion Pathways

Demonstration Project Components

- Pyrolysis Oil (*low moisture content, solid biomass to liquid fuel to CHP*)
- Syngas (*low moisture content solid, biomass to combustible gas to CHP*)
- Waste Heat (<u>medium moisture content, solid biomass to thermal energy to CHP</u>)
- Biogas (<u>high moisture content</u>, solid biomass to combustible gas to CHP)
- Biocarbon (*low moisture content, solid biomass to char to CHP*)
- Remote Community (syngas)

Co-funding Support provided by the Government of Canada's Clean Energy Fund and the participating hosts sites

Pyrolysis Oil Component Biomass \rightarrow Pyrolysis Oil \rightarrow CHP

Replacement of heavy fuel oil with pyrolysis oil to fuel a 15 MWe boiler & steam turbine CHP system.

Pyrolysis Oil Component Biomass \rightarrow Pyrolysis Oil \rightarrow CHP

Syngas Component Biomass → Syngas → CHP

Gasification of wood wastes to fuel a 100 kWe internal combustion engine driven CHP system.

Syngas Component Biomass → Syngas → CHP

Downdraft microgasifier.

Waste Heat Component Biomass \rightarrow Thermal Energy \rightarrow CHP

Combustion of wood wastes and recovery of heat to fuel a 100 kWe Organic Rankine Cycle (ORC) CHP system.

Waste Heat Thermal Energy → Power

CEATI Technical Brief T102700-0529 Waste Heat Inventory and Potential for Conversion to Power

Sector	Inventory (MW thermal)		Power Potentia' (MW power)	
	US	Can	US	Can
Manufacturing	52,598	9,116	8,764	1,143
Pipelines			800	900
NUG	2,175	82	384	14
Buildings	5,720	365	471	30
Quality		Sour	rces	
 High grade ≥600 C Medium grade 200 C to 600 C Low grade ≤200 C 		 Stack los Steam lo Process g Liquid lo 	sses as	Manitoba Hydro POWER SMART

Biogas Component Biomass \rightarrow Biogas \rightarrow CHP

Production of biogas via the anaerobic digestion of organic wastes to fuel a 70 kWe internal combustion engine driven CHP system.

Biogas Component Biomass \rightarrow Biogas \rightarrow CHP

Interior of anaerobic digester. Overhead frame work supports bacteria that feed on hydrogen sulfide.

Biocarbon Component Biomass \rightarrow Char \rightarrow CHP

Carbonization of wood chips to fuel separate solid fuel combustors and utilization of residual carbonizer heat via 400 kWt waste heat boiler.

Biocarbon Component Biomass \rightarrow Char \rightarrow CHP

Biocarbon combustion trial.

Remote Community Component (Syngas)

Demonstrate
alternatives to
traditional diesel
engine generated
power capable of
deployment to a
remote community in
the future.

What was learned

Technical

- Standards & grading for feedstocks.
- Designs to address climatic conditions.
- Government sponsorship development of standards.
- Better education of stakeholders.
- Regulatory
 - Significant barrier based on business as usual scenarios.
 - Government must update/modernize regulations, procedures, and practices.
- Market
 - Reliable and affordable biomass feedstocks.
 - Establish markets for pyrolysis oil and biocarbon.
 - Government support for small companies.

Questions

Dennis St. George, M.Sc., P.Eng.

204-360-3331

drstgeorge@hydro.mb.ca

